Understanding Why HCC Scores Can’t Predict Capitation Rates for Medicare Advantage Organizations

Understanding Why HCC Scores Can’t Predict Capitation Rates for Medicare Advantage Organizations

HCC scores also don’t predict costs (or payments).

EDITOR’S NOTE: This is the second and final article in a two-part series about Hierarchical Condition Category (HCC) risk scores. Part I can be found here.

In my last article, I wrote about how one could use HCC risk adjustment scores to identify providers that may possibly be coding inappropriately – that is, over-coding or under-coding. The article also focused on how benchmarking against a calculation of averages would help to prioritize clinical documentation improvement (CDI) efforts. 

But there’s a bigger story here, as far as I am concerned, and that is whether there is really any value to using those risk scores to establish and adjust capitation rates for Medicare Advantage Organizations (MA).

As discussed in the last article, at its most general definition, HCC risk scores are used to assess the relative health of a given patient. They are calculated by considering the diseases (ICD codes), services, and demographics of a given patient. The higher the score, the sicker the patient, and the likelihood that their care will be more expensive. And this translates into a higher capitation rate for the MAO. So, it’s not much of a stretch to think that the MAO would want the provider to include as many disease diagnoses as possible. 

This model led to the creation of the niche industry of CDI. CDI subject-matter experts are often also experts in inpatient coding and auditing, and their job is to ensure that the documentation in the chart is as complete as possible.

Under Section 20 of Chapter 7 in the Medicare Managed Care Manual (MMCM), we read the following: “Risk adjustment allows CMS (the Centers for Medicare & Medicaid Services) to pay plans for the risk of the beneficiaries they enroll, instead of an average amount for Medicare beneficiaries. By risk-adjusting plan payments, CMS is able to make appropriate and accurate payments for enrollees with differences in expected costs. Risk adjustment is used to adjust bidding and payment based on the health status and demographic characteristics of an enrollee. Risk scores measure individual beneficiaries’ relative risk, and risk scores are used to adjust payments for each beneficiary’s expected expenditures. By risk-adjusting plan bids, CMS is able to use standardized bids as base payments to plans.” 

What was surprising to me was how much of the raw data is used to calculate the risk scores from the Medicare Fee-for-service (FFS) data. Granted, the methodological statement includes a collection of “MA-reported diagnosis data,” but I am not quite sure what that means.

One of the reasons that CMS does this is to discourage MAOs from avoiding the enrollment of sicker patients. The idea is that sicker patients pay more, and if the MAO can provide care in an efficient manner, then sicker patients at least theoretically should be as profitable as healthier patients who generate less capitation revenue. The point to note is that the risk scores are relational, and compared against a median score of 1.0.  In essence, this represents the “average” cost for the “average” Medicare beneficiary. 

This brings me back to my surprise that CMS uses Medicare FFS data to calculate the scores, since this does not apply to Medicare FFS beneficiaries.  In an article by Stephanie L. Shimada et al., titled “Market and Beneficiary Characteristics Associated with Enrollment in Medicare Managed Care Plans and Fee-for-Service,” the authors state that “traditional Medicare and Medicare Advantage enrollees have historically had different characteristics, with Medicare Advantage enrollees somewhat healthier.” One can then logically assume that Medicare FFS enrollees are somewhat sicker. And if that is the case, then CMS is using data from sicker beneficiaries to calculate capitated payments for healthier beneficiaries. And off model, to be sure.

You would think that this might impact access to care, and rumors abound that MAOs are great if you are healthy, but not so great if you are sick. But in one study, “a similar share of beneficiaries in traditional Medicare and Medicare Advantage plans report problems in obtaining needed healthcare.” 

To me, then, the burning question focuses on whether the HCC risk scores are, in plain language, worth the cost of the effort to calculate them. And if not, then what alternative is there? One reason this is important is because some 45 percent of Medicare-eligible people are enrolled in MAOs, so there is a lot on the line here, to the tune of hundreds of billions of dollars. 

If it is true that sicker patients cost more (resulting in higher capitation rates), then one would expect there to be a strong correlation between the average risk score for a provider’s patient population and the average payment per unique beneficiary for that same period. I tested this by using the Physician and Other Practitioners Public Use File, which contains over a million lines, with each line representing a unique National Provider Identifier (NPI) code. After filtering the file for entities (rather than providers), specialties that were not relevant to the study, outliers, and other anomalies, I ended up with just over 780,000 lines, meaning that I had data on over 780,000 physicians and other providers (i.e. NPs, nurse practitioners, and PAs, physician assistants). In this file is included a field that reports the average HCC score for each provider. The way this is calculated is to take the HCC score for each unique beneficiary, total them up, and divide that by the number of unique beneficiaries. Another field reports the total payments from Medicare to each provider during the data period. Dividing that by the same number of unique beneficiaries results in the average paid amount per unique beneficiary. So now, I have two critical metrics: the average risk score and the average paid amount.

The assumption is that the average paid amount will track in a positive direction with the average HCC risk score, and that makes sense; higher risk score, higher payment. At least that’s the idea with MAOs. To make sure that I didn’t overwhelm the model with too much data (overfitting the model), in addition to correlating all of the data, I also took a random sample of 100 and 1,000, and plotted those as well.  The average correlation coefficient was 0.083, meaning that there was almost no correlation at all. In fact, the coefficient of determination, which is used to measure how well a statistical model predicts an outcome, was 0.00689. The means that less than 1 percent of the outcome can be explained by the model. Another way to explain this is to say that, in this case, less than 1 percent of the data fit the regression model of observed data points. 

In my opinion, whether HCC scores predict costs (or payments) is not even open for debate; they don’t. And I did this again with 12 specialties chosen at random to see if maybe averaging all specialties was cancelling the data. My findings showed that some of those specialties had negative correlations, meaning that as the risk score rose, the payments declined, while others had slightly higher correlations. The highest among the dozen was 0.242, giving a coefficient of determination of 0.058, meaning that 5.8 percent of the payments can be explained by the HCC score (or fit the regression model). 

My conclusion is that, at least when using the Medicare FFS data, there is no relationship between HCC scores and payments. And if payments are truly tied to costs, then the assumption is that there is no relationship between cost and HCC score. If this is the case, then what value is there in using HCC risk scores to negotiate capitation rates? 

I am the first to admit that my method does not produce the most accurate results; maybe averaging the data does something to remove the correlation, but I am unconvinced that is the case. And if HCC risk scores are not an accurate measure of costs (and therefore capitation rates), then what are? 

In the book “The Bell Jar” by Sylvia Plath, the character Esther Greenwood says, “’I don’t really know,’ I heard myself say. I felt a deep shock hearing myself say that, because the minute I said it, I knew it was true.” 

My response to that? Like Esther Greenwood, “I don’t know.” 

And that’s the world according to Frank.

Facebook
Twitter
LinkedIn

Frank Cohen, MPA

Frank Cohen is Senior Director of Analytics and Business Intelligence for VMG Health, LLC. He is a computational statistician with a focus on building risk-based audit models using predictive analytics and machine learning algorithms. He has participated in numerous studies and authored several books, including his latest, titled; “Don’t Do Something, Just Stand There: A Primer for Evidence-based Practice”

Related Stories

Leave a Reply

Please log in to your account to comment on this article.

Featured Webcasts

The Cost of Ignoring Risk Adjustment: How HCCs Impact Revenue & Compliance

The Cost of Ignoring Risk Adjustment: How HCCs Impact Revenue & Compliance

Stop revenue leakage and boost hospital performance by mastering risk adjustment and HCCs. This essential webcast with expert Cheryl Ericson, RN, MS, CCDS, CDIP, will reveal how inaccurate patient acuity documentation leads to lost reimbursements through penalties from poor quality scores. Learn the critical differences between HCCs and traditional CCs/MCCs, adapt your CDI workflows, and ensure accurate payments in Medicare Advantage and value-based care models. Perfect for HIM leaders, coders, and CDI professionals.  Don’t miss this chance to protect your hospital’s revenue and reputation!

May 29, 2025
I050825

Mastering ICD-10-CM Coding for Diabetes and it’s Complications: Avoiding Denials & Ensuring Compliance

Struggling with ICD-10-CM coding for diabetes and complications? This expert-led webcast clarifies complex combination codes, documentation gaps, and sequencing rules to reduce denials and ensure compliance. Dr. Angela Comfort will provide actionable strategies to accurately link diabetes to complications, improve provider documentation, and optimize reimbursement—helping coders, CDI specialists, and HIM leaders minimize audit risks and strengthen revenue integrity. Don’t miss this chance to master diabetes coding with real-world case studies, key takeaways, and live Q&A!

May 8, 2025
2025 Coding Clinic Webcast Series

2025 ICD-10-CM/PCS Coding Clinic Update Webcast Series

Uncover critical guidance. HIM coding expert, Kay Piper, RHIA, CDIP, CCS, provides an interactive review on important information in each of the AHA’s 2025 ICD-10-CM/PCS Quarterly Coding Clinics in easy-to-access on-demand webcasts, available shortly after each official publication.

April 14, 2025

Trending News

Featured Webcasts

The Two-Midnight Rule: New Challenges, Proven Strategies

The Two-Midnight Rule: New Challenges, Proven Strategies

RACmonitor is proud to welcome back Dr. Ronald Hirsch, one of his most requested webcasts. In this highly anticipated session, Dr. Hirsch will break down the complex Two Midnight Rule Medicare regulations, translating them into clear, actionable guidance. He’ll walk you through the basics of the rule, offer expert interpretation, and apply the rule to real-world clinical scenarios—so you leave with greater clarity, confidence, and the tools to ensure compliance.

June 19, 2025
Open Door Forum Webcast Series

Open Door Forum Webcast Series

Bring your questions and join the conversation during this open forum series, live every Wednesday at 10 a.m. EST from June 11–July 30. Hosted by Chuck Buck, these fast-paced 30-minute sessions connect you directly with top healthcare experts tackling today’s most urgent compliance and policy issues.

June 11, 2025
Open Door Forum: The Changing Face of Addiction: Coding, Compliance & Care

Open Door Forum: The Changing Face of Addiction: Coding, Compliance & Care

Substance abuse is everywhere. It’s a complicated diagnosis with wide-ranging implications well beyond acute care. The face of addiction continues to change so it’s important to remember not just the addict but the spectrum of extended victims and the other social determinants and legal ramifications. Join John K. Hall, MD, JD, MBA, FCLM, FRCPC, for a critical Q&A on navigating substance abuse in 2025.  Register today and be a part of the conversation!

July 16, 2025

Trending News

Happy National Doctor’s Day! Learn how to get a complimentary webcast on ‘Decoding Social Admissions’ as a token of our heartfelt appreciation! Click here to learn more →

CYBER WEEK IS HERE! Don’t miss your chance to get 20% off now until Dec. 2 with code CYBER24